Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
subrec
Next ⟩
subreci
Metamath Proof Explorer
Ascii
Unicode
Theorem
subrec
Description:
Subtraction of reciprocals.
(Contributed by
Scott Fenton
, 9-Jul-2015)
Ref
Expression
Assertion
subrec
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
−
1
B
=
B
−
A
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
1cnd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
∈
ℂ
2
simpll
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
∈
ℂ
3
simprl
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
B
∈
ℂ
4
simplr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
A
≠
0
5
simprr
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
B
≠
0
6
1
2
1
3
4
5
divsubdivd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
−
1
B
=
1
⁢
B
−
1
⁢
A
A
⁢
B
7
3
mulid2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
⁢
B
=
B
8
2
mulid2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
⁢
A
=
A
9
7
8
oveq12d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
⁢
B
−
1
⁢
A
=
B
−
A
10
9
oveq1d
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
⁢
B
−
1
⁢
A
A
⁢
B
=
B
−
A
A
⁢
B
11
6
10
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
B
∈
ℂ
∧
B
≠
0
→
1
A
−
1
B
=
B
−
A
A
⁢
B