Metamath Proof Explorer


Theorem subrec

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion subrec A A 0 B B 0 1 A 1 B = B A A B

Proof

Step Hyp Ref Expression
1 1cnd A A 0 B B 0 1
2 simpll A A 0 B B 0 A
3 simprl A A 0 B B 0 B
4 simplr A A 0 B B 0 A 0
5 simprr A A 0 B B 0 B 0
6 1 2 1 3 4 5 divsubdivd A A 0 B B 0 1 A 1 B = 1 B 1 A A B
7 3 mulid2d A A 0 B B 0 1 B = B
8 2 mulid2d A A 0 B B 0 1 A = A
9 7 8 oveq12d A A 0 B B 0 1 B 1 A = B A
10 9 oveq1d A A 0 B B 0 1 B 1 A A B = B A A B
11 6 10 eqtrd A A 0 B B 0 1 A 1 B = B A A B