Metamath Proof Explorer


Theorem subrec

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015)

Ref Expression
Assertion subrec AA0BB01A1B=BAAB

Proof

Step Hyp Ref Expression
1 1cnd AA0BB01
2 simpll AA0BB0A
3 simprl AA0BB0B
4 simplr AA0BB0A0
5 simprr AA0BB0B0
6 1 2 1 3 4 5 divsubdivd AA0BB01A1B=1B1AAB
7 3 mullidd AA0BB01B=B
8 2 mullidd AA0BB01A=A
9 7 8 oveq12d AA0BB01B1A=BA
10 9 oveq1d AA0BB01B1AAB=BAAB
11 6 10 eqtrd AA0BB01A1B=BAAB