Metamath Proof Explorer


Theorem sqcl

Description: Closure of square. (Contributed by NM, 10-Aug-1999)

Ref Expression
Assertion sqcl AA2

Proof

Step Hyp Ref Expression
1 sqval AA2=AA
2 mulcl AAAA
3 2 anidms AAA
4 1 3 eqeltrd AA2