Metamath Proof Explorer


Theorem elrpii

Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008)

Ref Expression
Hypotheses elrpi.1 A
elrpi.2 0<A
Assertion elrpii A+

Proof

Step Hyp Ref Expression
1 elrpi.1 A
2 elrpi.2 0<A
3 elrp A+A0<A
4 1 2 3 mpbir2an A+