Metamath Proof Explorer


Theorem suble0d

Description: Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
Assertion suble0d φ A B 0 A B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 suble0 A B A B 0 A B
4 1 2 3 syl2anc φ A B 0 A B