Metamath Proof Explorer


Theorem suble0d

Description: Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion suble0d ( 𝜑 → ( ( 𝐴𝐵 ) ≤ 0 ↔ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 suble0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 0 ↔ 𝐴𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( 𝐴𝐵 ) ≤ 0 ↔ 𝐴𝐵 ) )