Metamath Proof Explorer
Description: Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
Assertion |
suble0d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltnegd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
suble0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |