Metamath Proof Explorer


Theorem rpmulcl

Description: Closure law for multiplication of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by NM, 27-Oct-2007)

Ref Expression
Assertion rpmulcl A+B+AB+

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpre B+B
3 remulcl ABAB
4 1 2 3 syl2an A+B+AB
5 elrp A+A0<A
6 elrp B+B0<B
7 mulgt0 A0<AB0<B0<AB
8 5 6 7 syl2anb A+B+0<AB
9 elrp AB+AB0<AB
10 4 8 9 sylanbrc A+B+AB+