Description: A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpred.1 | |- ( ph -> A e. RR+ ) |
|
Assertion | rpne0d | |- ( ph -> A =/= 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
2 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
3 | 1 2 | syl | |- ( ph -> A =/= 0 ) |