Metamath Proof Explorer


Theorem rpne0d

Description: A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
Assertion rpne0d ( 𝜑𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
3 1 2 syl ( 𝜑𝐴 ≠ 0 )