Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fconst.1 | |- B e. _V |
|
Assertion | fconst | |- ( A X. { B } ) : A --> { B } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | |- B e. _V |
|
2 | fconstmpt | |- ( A X. { B } ) = ( x e. A |-> B ) |
|
3 | 1 2 | fnmpti | |- ( A X. { B } ) Fn A |
4 | rnxpss | |- ran ( A X. { B } ) C_ { B } |
|
5 | df-f | |- ( ( A X. { B } ) : A --> { B } <-> ( ( A X. { B } ) Fn A /\ ran ( A X. { B } ) C_ { B } ) ) |
|
6 | 3 4 5 | mpbir2an | |- ( A X. { B } ) : A --> { B } |