Metamath Proof Explorer


Theorem fconst

Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypothesis fconst.1
|- B e. _V
Assertion fconst
|- ( A X. { B } ) : A --> { B }

Proof

Step Hyp Ref Expression
1 fconst.1
 |-  B e. _V
2 fconstmpt
 |-  ( A X. { B } ) = ( x e. A |-> B )
3 1 2 fnmpti
 |-  ( A X. { B } ) Fn A
4 rnxpss
 |-  ran ( A X. { B } ) C_ { B }
5 df-f
 |-  ( ( A X. { B } ) : A --> { B } <-> ( ( A X. { B } ) Fn A /\ ran ( A X. { B } ) C_ { B } ) )
6 3 4 5 mpbir2an
 |-  ( A X. { B } ) : A --> { B }