Metamath Proof Explorer


Theorem fconst

Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypothesis fconst.1 𝐵 ∈ V
Assertion fconst ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 }

Proof

Step Hyp Ref Expression
1 fconst.1 𝐵 ∈ V
2 fconstmpt ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 )
3 1 2 fnmpti ( 𝐴 × { 𝐵 } ) Fn 𝐴
4 rnxpss ran ( 𝐴 × { 𝐵 } ) ⊆ { 𝐵 }
5 df-f ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ↔ ( ( 𝐴 × { 𝐵 } ) Fn 𝐴 ∧ ran ( 𝐴 × { 𝐵 } ) ⊆ { 𝐵 } ) )
6 3 4 5 mpbir2an ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 }