Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fconst.1 | ⊢ 𝐵 ∈ V | |
Assertion | fconst | ⊢ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | ⊢ 𝐵 ∈ V | |
2 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
3 | 1 2 | fnmpti | ⊢ ( 𝐴 × { 𝐵 } ) Fn 𝐴 |
4 | rnxpss | ⊢ ran ( 𝐴 × { 𝐵 } ) ⊆ { 𝐵 } | |
5 | df-f | ⊢ ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ↔ ( ( 𝐴 × { 𝐵 } ) Fn 𝐴 ∧ ran ( 𝐴 × { 𝐵 } ) ⊆ { 𝐵 } ) ) | |
6 | 3 4 5 | mpbir2an | ⊢ ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } |