| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxsca.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrx0.0 |
⊢ 0 = ( 𝐼 × { 0 } ) |
| 3 |
1
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝐻 ) = ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 5 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 7 |
|
eqid |
⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 8 |
5 6 7
|
tcphval |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
| 11 |
|
fvexd |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∈ V ) |
| 12 |
11
|
mptexd |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V ) |
| 13 |
|
eqid |
⊢ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 15 |
13 14
|
tng0 |
⊢ ( ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
| 16 |
12 15
|
syl |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
| 17 |
|
refld |
⊢ ℝfld ∈ Field |
| 18 |
|
isfld |
⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) |
| 19 |
|
drngring |
⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) |
| 20 |
19
|
adantr |
⊢ ( ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) → ℝfld ∈ Ring ) |
| 21 |
18 20
|
sylbi |
⊢ ( ℝfld ∈ Field → ℝfld ∈ Ring ) |
| 22 |
17 21
|
ax-mp |
⊢ ℝfld ∈ Ring |
| 23 |
|
eqid |
⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) |
| 24 |
|
re0g |
⊢ 0 = ( 0g ‘ ℝfld ) |
| 25 |
23 24
|
frlm0 |
⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 26 |
22 25
|
mpan |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 27 |
2 26
|
eqtr2id |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = 0 ) |
| 28 |
10 16 27
|
3eqtr2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = 0 ) |
| 29 |
4 28
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝐻 ) = 0 ) |