Metamath Proof Explorer


Theorem elab4g

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012)

Ref Expression
Hypotheses elab4g.1 x=Aφψ
elab4g.2 B=x|φ
Assertion elab4g ABAVψ

Proof

Step Hyp Ref Expression
1 elab4g.1 x=Aφψ
2 elab4g.2 B=x|φ
3 elex ABAV
4 1 2 elab2g AVABψ
5 3 4 biadanii ABAVψ