Metamath Proof Explorer


Theorem elabd

Description: Explicit demonstration the class { x | ps } is not empty by the example A . (Contributed by RP, 12-Aug-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypotheses elabd.1 φAV
elabd.2 φχ
elabd.3 x=Aψχ
Assertion elabd φAx|ψ

Proof

Step Hyp Ref Expression
1 elabd.1 φAV
2 elabd.2 φχ
3 elabd.3 x=Aψχ
4 3 elabg AVAx|ψχ
5 1 4 syl φAx|ψχ
6 2 5 mpbird φAx|ψ