Metamath Proof Explorer


Theorem elabf

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypotheses elabf.1 xψ
elabf.2 AV
elabf.3 x=Aφψ
Assertion elabf Ax|φψ

Proof

Step Hyp Ref Expression
1 elabf.1 xψ
2 elabf.2 AV
3 elabf.3 x=Aφψ
4 nfcv _xA
5 4 1 3 elabgf AVAx|φψ
6 2 5 ax-mp Ax|φψ