Metamath Proof Explorer


Theorem eldifvsn

Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion eldifvsn AVAVBAB

Proof

Step Hyp Ref Expression
1 eldifsn AVBAVAB
2 elex AVAV
3 2 biantrurd AVABAVAB
4 1 3 bitr4id AVAVBAB