Metamath Proof Explorer


Theorem elec

Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses elec.1 AV
elec.2 BV
Assertion elec ABRBRA

Proof

Step Hyp Ref Expression
1 elec.1 AV
2 elec.2 BV
3 elecg AVBVABRBRA
4 1 2 3 mp2an ABRBRA