Metamath Proof Explorer


Theorem elimasn

Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by BJ, 16-Oct-2024) TODO: replace existing usages by usages of elimasn1 , remove, and relabel elimasn1 to "elimasn".

Ref Expression
Hypotheses elimasn.1 B V
elimasn.2 C V
Assertion elimasn C A B B C A

Proof

Step Hyp Ref Expression
1 elimasn.1 B V
2 elimasn.2 C V
3 elimasng B V C V C A B B C A
4 1 2 3 mp2an C A B B C A