Metamath Proof Explorer


Theorem elnelun

Description: The union of the set of elements s determining classes C (which may depend on s ) containing a special element and the set of elements s determining classes C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020) (Revised by AV, 17-Dec-2021)

Ref Expression
Hypotheses elneldisj.e E=sA|BC
elneldisj.n N=sA|BC
Assertion elnelun EN=A

Proof

Step Hyp Ref Expression
1 elneldisj.e E=sA|BC
2 elneldisj.n N=sA|BC
3 df-nel BC¬BC
4 3 rabbii sA|BC=sA|¬BC
5 2 4 eqtri N=sA|¬BC
6 1 5 uneq12i EN=sA|BCsA|¬BC
7 rabxm A=sA|BCsA|¬BC
8 6 7 eqtr4i EN=A