Metamath Proof Explorer


Theorem elovmpt3rab

Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by AV, 17-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypothesis elovmpt3rab.o O=xV,yVzMaN|φ
Assertion elovmpt3rab MUNTAXOYZXVYVZMAN

Proof

Step Hyp Ref Expression
1 elovmpt3rab.o O=xV,yVzMaN|φ
2 eqidd x=Xy=YM=M
3 eqidd x=Xy=YN=N
4 1 2 3 elovmpt3rab1 MUNTAXOYZXVYVZMAN