Metamath Proof Explorer


Theorem en2

Description: A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en2 A2𝑜xyA=xy

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 1 onordi Ord1𝑜
3 df-2o 2𝑜=suc1𝑜
4 en1 Ax1𝑜yAx=y
5 4 biimpi Ax1𝑜yAx=y
6 df-pr xy=xy
7 6 enp1ilem xAAx=yA=xy
8 7 eximdv xAyAx=yyA=xy
9 2 3 5 8 enp1i A2𝑜xyA=xy