Metamath Proof Explorer


Theorem enp1ilem

Description: Lemma for uses of enp1i . (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Hypothesis enp1ilem.1 T = x S
Assertion enp1ilem x A A x = S A = T

Proof

Step Hyp Ref Expression
1 enp1ilem.1 T = x S
2 uneq1 A x = S A x x = S x
3 undif1 A x x = A x
4 uncom S x = x S
5 4 1 eqtr4i S x = T
6 2 3 5 3eqtr3g A x = S A x = T
7 snssi x A x A
8 ssequn2 x A A x = A
9 7 8 sylib x A A x = A
10 9 eqeq1d x A A x = T A = T
11 6 10 syl5ib x A A x = S A = T