Step |
Hyp |
Ref |
Expression |
1 |
|
enp1ilem.1 |
⊢ 𝑇 = ( { 𝑥 } ∪ 𝑆 ) |
2 |
|
uneq1 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑆 ∪ { 𝑥 } ) ) |
3 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) |
4 |
|
uncom |
⊢ ( 𝑆 ∪ { 𝑥 } ) = ( { 𝑥 } ∪ 𝑆 ) |
5 |
4 1
|
eqtr4i |
⊢ ( 𝑆 ∪ { 𝑥 } ) = 𝑇 |
6 |
2 3 5
|
3eqtr3g |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → ( 𝐴 ∪ { 𝑥 } ) = 𝑇 ) |
7 |
|
snssi |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ 𝐴 ) |
8 |
|
ssequn2 |
⊢ ( { 𝑥 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) |
9 |
7 8
|
sylib |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∪ { 𝑥 } ) = 𝑇 ↔ 𝐴 = 𝑇 ) ) |
11 |
6 10
|
syl5ib |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) = 𝑆 → 𝐴 = 𝑇 ) ) |