| Step |
Hyp |
Ref |
Expression |
| 1 |
|
enp1i.1 |
⊢ Ord 𝑀 |
| 2 |
|
enp1i.2 |
⊢ 𝑁 = suc 𝑀 |
| 3 |
|
enp1i.3 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → 𝜑 ) |
| 4 |
|
enp1i.4 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
| 5 |
2
|
breq2i |
⊢ ( 𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀 ) |
| 6 |
|
encv |
⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ∈ V ∧ suc 𝑀 ∈ V ) ) |
| 7 |
6
|
simprd |
⊢ ( 𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V ) |
| 8 |
|
sssucid |
⊢ 𝑀 ⊆ suc 𝑀 |
| 9 |
|
ssexg |
⊢ ( ( 𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V ) → 𝑀 ∈ V ) |
| 10 |
8 9
|
mpan |
⊢ ( suc 𝑀 ∈ V → 𝑀 ∈ V ) |
| 11 |
|
elong |
⊢ ( 𝑀 ∈ V → ( 𝑀 ∈ On ↔ Ord 𝑀 ) ) |
| 12 |
7 10 11
|
3syl |
⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝑀 ∈ On ↔ Ord 𝑀 ) ) |
| 13 |
1 12
|
mpbiri |
⊢ ( 𝐴 ≈ suc 𝑀 → 𝑀 ∈ On ) |
| 14 |
|
rexdif1en |
⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 15 |
13 14
|
mpancom |
⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 16 |
3
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 17 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 18 |
4
|
imp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) |
| 19 |
18
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝜓 ) |
| 20 |
17 19
|
sylbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 𝜓 ) |
| 21 |
15 16 20
|
3syl |
⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 𝜓 ) |
| 22 |
5 21
|
sylbi |
⊢ ( 𝐴 ≈ 𝑁 → ∃ 𝑥 𝜓 ) |