| Step |
Hyp |
Ref |
Expression |
| 1 |
|
enp1iOLD.1 |
⊢ 𝑀 ∈ ω |
| 2 |
|
enp1iOLD.2 |
⊢ 𝑁 = suc 𝑀 |
| 3 |
|
enp1iOLD.3 |
⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → 𝜑 ) |
| 4 |
|
enp1iOLD.4 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
| 5 |
|
nsuceq0 |
⊢ suc 𝑀 ≠ ∅ |
| 6 |
|
breq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ≈ 𝑁 ↔ ∅ ≈ 𝑁 ) ) |
| 7 |
|
ensym |
⊢ ( ∅ ≈ 𝑁 → 𝑁 ≈ ∅ ) |
| 8 |
|
en0 |
⊢ ( 𝑁 ≈ ∅ ↔ 𝑁 = ∅ ) |
| 9 |
7 8
|
sylib |
⊢ ( ∅ ≈ 𝑁 → 𝑁 = ∅ ) |
| 10 |
2 9
|
eqtr3id |
⊢ ( ∅ ≈ 𝑁 → suc 𝑀 = ∅ ) |
| 11 |
6 10
|
biimtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐴 ≈ 𝑁 → suc 𝑀 = ∅ ) ) |
| 12 |
11
|
necon3ad |
⊢ ( 𝐴 = ∅ → ( suc 𝑀 ≠ ∅ → ¬ 𝐴 ≈ 𝑁 ) ) |
| 13 |
5 12
|
mpi |
⊢ ( 𝐴 = ∅ → ¬ 𝐴 ≈ 𝑁 ) |
| 14 |
13
|
con2i |
⊢ ( 𝐴 ≈ 𝑁 → ¬ 𝐴 = ∅ ) |
| 15 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝐴 ≈ 𝑁 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 17 |
2
|
breq2i |
⊢ ( 𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀 ) |
| 18 |
|
dif1ennn |
⊢ ( ( 𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 19 |
1 18
|
mp3an1 |
⊢ ( ( 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 20 |
19 3
|
syl |
⊢ ( ( 𝐴 ≈ suc 𝑀 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) |
| 21 |
20
|
ex |
⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 22 |
17 21
|
sylbi |
⊢ ( 𝐴 ≈ 𝑁 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 23 |
22 4
|
sylcom |
⊢ ( 𝐴 ≈ 𝑁 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
| 24 |
23
|
eximdv |
⊢ ( 𝐴 ≈ 𝑁 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 𝜓 ) ) |
| 25 |
16 24
|
mpd |
⊢ ( 𝐴 ≈ 𝑁 → ∃ 𝑥 𝜓 ) |