| Step |
Hyp |
Ref |
Expression |
| 1 |
|
enp1iOLD.1 |
|- M e. _om |
| 2 |
|
enp1iOLD.2 |
|- N = suc M |
| 3 |
|
enp1iOLD.3 |
|- ( ( A \ { x } ) ~~ M -> ph ) |
| 4 |
|
enp1iOLD.4 |
|- ( x e. A -> ( ph -> ps ) ) |
| 5 |
|
nsuceq0 |
|- suc M =/= (/) |
| 6 |
|
breq1 |
|- ( A = (/) -> ( A ~~ N <-> (/) ~~ N ) ) |
| 7 |
|
ensym |
|- ( (/) ~~ N -> N ~~ (/) ) |
| 8 |
|
en0 |
|- ( N ~~ (/) <-> N = (/) ) |
| 9 |
7 8
|
sylib |
|- ( (/) ~~ N -> N = (/) ) |
| 10 |
2 9
|
eqtr3id |
|- ( (/) ~~ N -> suc M = (/) ) |
| 11 |
6 10
|
biimtrdi |
|- ( A = (/) -> ( A ~~ N -> suc M = (/) ) ) |
| 12 |
11
|
necon3ad |
|- ( A = (/) -> ( suc M =/= (/) -> -. A ~~ N ) ) |
| 13 |
5 12
|
mpi |
|- ( A = (/) -> -. A ~~ N ) |
| 14 |
13
|
con2i |
|- ( A ~~ N -> -. A = (/) ) |
| 15 |
|
neq0 |
|- ( -. A = (/) <-> E. x x e. A ) |
| 16 |
14 15
|
sylib |
|- ( A ~~ N -> E. x x e. A ) |
| 17 |
2
|
breq2i |
|- ( A ~~ N <-> A ~~ suc M ) |
| 18 |
|
dif1ennn |
|- ( ( M e. _om /\ A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M ) |
| 19 |
1 18
|
mp3an1 |
|- ( ( A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M ) |
| 20 |
19 3
|
syl |
|- ( ( A ~~ suc M /\ x e. A ) -> ph ) |
| 21 |
20
|
ex |
|- ( A ~~ suc M -> ( x e. A -> ph ) ) |
| 22 |
17 21
|
sylbi |
|- ( A ~~ N -> ( x e. A -> ph ) ) |
| 23 |
22 4
|
sylcom |
|- ( A ~~ N -> ( x e. A -> ps ) ) |
| 24 |
23
|
eximdv |
|- ( A ~~ N -> ( E. x x e. A -> E. x ps ) ) |
| 25 |
16 24
|
mpd |
|- ( A ~~ N -> E. x ps ) |