Metamath Proof Explorer


Theorem enp1i

Description: Proof induction for en2i and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Hypotheses enp1i.1
|- M e. _om
enp1i.2
|- N = suc M
enp1i.3
|- ( ( A \ { x } ) ~~ M -> ph )
enp1i.4
|- ( x e. A -> ( ph -> ps ) )
Assertion enp1i
|- ( A ~~ N -> E. x ps )

Proof

Step Hyp Ref Expression
1 enp1i.1
 |-  M e. _om
2 enp1i.2
 |-  N = suc M
3 enp1i.3
 |-  ( ( A \ { x } ) ~~ M -> ph )
4 enp1i.4
 |-  ( x e. A -> ( ph -> ps ) )
5 nsuceq0
 |-  suc M =/= (/)
6 breq1
 |-  ( A = (/) -> ( A ~~ N <-> (/) ~~ N ) )
7 ensym
 |-  ( (/) ~~ N -> N ~~ (/) )
8 en0
 |-  ( N ~~ (/) <-> N = (/) )
9 7 8 sylib
 |-  ( (/) ~~ N -> N = (/) )
10 2 9 eqtr3id
 |-  ( (/) ~~ N -> suc M = (/) )
11 6 10 syl6bi
 |-  ( A = (/) -> ( A ~~ N -> suc M = (/) ) )
12 11 necon3ad
 |-  ( A = (/) -> ( suc M =/= (/) -> -. A ~~ N ) )
13 5 12 mpi
 |-  ( A = (/) -> -. A ~~ N )
14 13 con2i
 |-  ( A ~~ N -> -. A = (/) )
15 neq0
 |-  ( -. A = (/) <-> E. x x e. A )
16 14 15 sylib
 |-  ( A ~~ N -> E. x x e. A )
17 2 breq2i
 |-  ( A ~~ N <-> A ~~ suc M )
18 dif1en
 |-  ( ( M e. _om /\ A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M )
19 1 18 mp3an1
 |-  ( ( A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M )
20 19 3 syl
 |-  ( ( A ~~ suc M /\ x e. A ) -> ph )
21 20 ex
 |-  ( A ~~ suc M -> ( x e. A -> ph ) )
22 17 21 sylbi
 |-  ( A ~~ N -> ( x e. A -> ph ) )
23 22 4 sylcom
 |-  ( A ~~ N -> ( x e. A -> ps ) )
24 23 eximdv
 |-  ( A ~~ N -> ( E. x x e. A -> E. x ps ) )
25 16 24 mpd
 |-  ( A ~~ N -> E. x ps )