Step |
Hyp |
Ref |
Expression |
1 |
|
enp1i.1 |
|- M e. _om |
2 |
|
enp1i.2 |
|- N = suc M |
3 |
|
enp1i.3 |
|- ( ( A \ { x } ) ~~ M -> ph ) |
4 |
|
enp1i.4 |
|- ( x e. A -> ( ph -> ps ) ) |
5 |
|
nsuceq0 |
|- suc M =/= (/) |
6 |
|
breq1 |
|- ( A = (/) -> ( A ~~ N <-> (/) ~~ N ) ) |
7 |
|
ensym |
|- ( (/) ~~ N -> N ~~ (/) ) |
8 |
|
en0 |
|- ( N ~~ (/) <-> N = (/) ) |
9 |
7 8
|
sylib |
|- ( (/) ~~ N -> N = (/) ) |
10 |
2 9
|
eqtr3id |
|- ( (/) ~~ N -> suc M = (/) ) |
11 |
6 10
|
syl6bi |
|- ( A = (/) -> ( A ~~ N -> suc M = (/) ) ) |
12 |
11
|
necon3ad |
|- ( A = (/) -> ( suc M =/= (/) -> -. A ~~ N ) ) |
13 |
5 12
|
mpi |
|- ( A = (/) -> -. A ~~ N ) |
14 |
13
|
con2i |
|- ( A ~~ N -> -. A = (/) ) |
15 |
|
neq0 |
|- ( -. A = (/) <-> E. x x e. A ) |
16 |
14 15
|
sylib |
|- ( A ~~ N -> E. x x e. A ) |
17 |
2
|
breq2i |
|- ( A ~~ N <-> A ~~ suc M ) |
18 |
|
dif1en |
|- ( ( M e. _om /\ A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M ) |
19 |
1 18
|
mp3an1 |
|- ( ( A ~~ suc M /\ x e. A ) -> ( A \ { x } ) ~~ M ) |
20 |
19 3
|
syl |
|- ( ( A ~~ suc M /\ x e. A ) -> ph ) |
21 |
20
|
ex |
|- ( A ~~ suc M -> ( x e. A -> ph ) ) |
22 |
17 21
|
sylbi |
|- ( A ~~ N -> ( x e. A -> ph ) ) |
23 |
22 4
|
sylcom |
|- ( A ~~ N -> ( x e. A -> ps ) ) |
24 |
23
|
eximdv |
|- ( A ~~ N -> ( E. x x e. A -> E. x ps ) ) |
25 |
16 24
|
mpd |
|- ( A ~~ N -> E. x ps ) |