Metamath Proof Explorer


Theorem en4

Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en4 A4𝑜xyzwA=xyzw

Proof

Step Hyp Ref Expression
1 ord3 Ord3𝑜
2 df-4o 4𝑜=suc3𝑜
3 en3 Ax3𝑜yzwAx=yzw
4 qdassr xyzw=xyzw
5 4 enp1ilem xAAx=yzwA=xyzw
6 5 eximdv xAwAx=yzwwA=xyzw
7 6 2eximdv xAyzwAx=yzwyzwA=xyzw
8 1 2 3 7 enp1i A4𝑜xyzwA=xyzw