Metamath Proof Explorer


Theorem enrbreq

Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion enrbreq A𝑷B𝑷C𝑷D𝑷AB~𝑹CDA+𝑷D=B+𝑷C

Proof

Step Hyp Ref Expression
1 df-enr ~𝑹=xy|x𝑷×𝑷y𝑷×𝑷zwvux=zwy=vuz+𝑷u=w+𝑷v
2 1 ecopoveq A𝑷B𝑷C𝑷D𝑷AB~𝑹CDA+𝑷D=B+𝑷C