Metamath Proof Explorer


Theorem eq0f

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eq0f.1 _xA
Assertion eq0f A=x¬xA

Proof

Step Hyp Ref Expression
1 eq0f.1 _xA
2 nfcv _x
3 1 2 cleqf A=xxAx
4 noel ¬x
5 4 nbn ¬xAxAx
6 5 albii x¬xAxxAx
7 3 6 bitr4i A=x¬xA