Metamath Proof Explorer


Theorem eqbrtri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses eqbrtr.1 A=B
eqbrtr.2 BRC
Assertion eqbrtri ARC

Proof

Step Hyp Ref Expression
1 eqbrtr.1 A=B
2 eqbrtr.2 BRC
3 1 breq1i ARCBRC
4 2 3 mpbir ARC