Metamath Proof Explorer
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)
|
|
Ref |
Expression |
|
Hypotheses |
eqbrtrr.1 |
|
|
|
eqbrtrr.2 |
|
|
Assertion |
eqbrtrri |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqbrtrr.1 |
|
| 2 |
|
eqbrtrr.2 |
|
| 3 |
1
|
eqcomi |
|
| 4 |
3 2
|
eqbrtri |
|