Metamath Proof Explorer


Theorem eqbrtrrid

Description: A chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004)

Ref Expression
Hypotheses eqbrtrrid.1 B=A
eqbrtrrid.2 φBRC
Assertion eqbrtrrid φARC

Proof

Step Hyp Ref Expression
1 eqbrtrrid.1 B=A
2 eqbrtrrid.2 φBRC
3 eqid C=C
4 2 1 3 3brtr3g φARC