Metamath Proof Explorer


Theorem eqnegad

Description: If a complex number equals its own negative, it is zero. One-way deduction form of eqneg . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses eqnegad.1 φA
eqnegad.2 φA=A
Assertion eqnegad φA=0

Proof

Step Hyp Ref Expression
1 eqnegad.1 φA
2 eqnegad.2 φA=A
3 1 eqnegd φA=AA=0
4 2 3 mpbid φA=0