Metamath Proof Explorer


Theorem eqrelriiv

Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypotheses eqreliiv.1 RelA
eqreliiv.2 RelB
eqreliiv.3 xyAxyB
Assertion eqrelriiv A=B

Proof

Step Hyp Ref Expression
1 eqreliiv.1 RelA
2 eqreliiv.2 RelB
3 eqreliiv.3 xyAxyB
4 3 eqrelriv RelARelBA=B
5 1 2 4 mp2an A=B