Metamath Proof Explorer


Theorem eqrelriiv

Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypotheses eqreliiv.1 Rel A
eqreliiv.2 Rel B
eqreliiv.3 x y A x y B
Assertion eqrelriiv A = B

Proof

Step Hyp Ref Expression
1 eqreliiv.1 Rel A
2 eqreliiv.2 Rel B
3 eqreliiv.3 x y A x y B
4 3 eqrelriv Rel A Rel B A = B
5 1 2 4 mp2an A = B