Metamath Proof Explorer


Theorem eqri

Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)

Ref Expression
Hypotheses eqri.1 _xA
eqri.2 _xB
eqri.3 xAxB
Assertion eqri A=B

Proof

Step Hyp Ref Expression
1 eqri.1 _xA
2 eqri.2 _xB
3 eqri.3 xAxB
4 nftru x
5 3 a1i xAxB
6 4 1 2 5 eqrd A=B
7 6 mptru A=B