Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqri.1 | |- F/_ x A |
|
| eqri.2 | |- F/_ x B |
||
| eqri.3 | |- ( x e. A <-> x e. B ) |
||
| Assertion | eqri | |- A = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqri.1 | |- F/_ x A |
|
| 2 | eqri.2 | |- F/_ x B |
|
| 3 | eqri.3 | |- ( x e. A <-> x e. B ) |
|
| 4 | nftru | |- F/ x T. |
|
| 5 | 3 | a1i | |- ( T. -> ( x e. A <-> x e. B ) ) |
| 6 | 4 1 2 5 | eqrd | |- ( T. -> A = B ) |
| 7 | 6 | mptru | |- A = B |