Metamath Proof Explorer


Theorem eqrd

Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017) (Proof shortened by BJ, 1-Dec-2021)

Ref Expression
Hypotheses eqrd.0
|- F/ x ph
eqrd.1
|- F/_ x A
eqrd.2
|- F/_ x B
eqrd.3
|- ( ph -> ( x e. A <-> x e. B ) )
Assertion eqrd
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 eqrd.0
 |-  F/ x ph
2 eqrd.1
 |-  F/_ x A
3 eqrd.2
 |-  F/_ x B
4 eqrd.3
 |-  ( ph -> ( x e. A <-> x e. B ) )
5 1 4 alrimi
 |-  ( ph -> A. x ( x e. A <-> x e. B ) )
6 2 3 cleqf
 |-  ( A = B <-> A. x ( x e. A <-> x e. B ) )
7 5 6 sylibr
 |-  ( ph -> A = B )