Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017) (Proof shortened by BJ, 1-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrd.0 | |- F/ x ph |
|
| eqrd.1 | |- F/_ x A |
||
| eqrd.2 | |- F/_ x B |
||
| eqrd.3 | |- ( ph -> ( x e. A <-> x e. B ) ) |
||
| Assertion | eqrd | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | |- F/ x ph |
|
| 2 | eqrd.1 | |- F/_ x A |
|
| 3 | eqrd.2 | |- F/_ x B |
|
| 4 | eqrd.3 | |- ( ph -> ( x e. A <-> x e. B ) ) |
|
| 5 | 1 4 | alrimi | |- ( ph -> A. x ( x e. A <-> x e. B ) ) |
| 6 | 2 3 | cleqf | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
| 7 | 5 6 | sylibr | |- ( ph -> A = B ) |