Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Subclasses and subsets eqrd  
				
		 
		
			
		 
		Description:   Deduce equality of classes from equivalence of membership.  (Contributed by Thierry Arnoux , 21-Mar-2017)   (Proof shortened by BJ , 1-Dec-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						eqrd.0 ⊢  Ⅎ 𝑥  𝜑   
					
						eqrd.1 ⊢  Ⅎ  𝑥  𝐴   
					
						eqrd.2 ⊢  Ⅎ  𝑥  𝐵   
					
						eqrd.3 ⊢  ( 𝜑   →  ( 𝑥   ∈  𝐴   ↔  𝑥   ∈  𝐵  ) )  
				
					Assertion 
					eqrd ⊢   ( 𝜑   →  𝐴   =  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							eqrd.0 ⊢  Ⅎ 𝑥  𝜑   
						
							2 
								
							 
							eqrd.1 ⊢  Ⅎ  𝑥  𝐴   
						
							3 
								
							 
							eqrd.2 ⊢  Ⅎ  𝑥  𝐵   
						
							4 
								
							 
							eqrd.3 ⊢  ( 𝜑   →  ( 𝑥   ∈  𝐴   ↔  𝑥   ∈  𝐵  ) )  
						
							5 
								1  4 
							 
							alrimi ⊢  ( 𝜑   →  ∀ 𝑥  ( 𝑥   ∈  𝐴   ↔  𝑥   ∈  𝐵  ) )  
						
							6 
								2  3 
							 
							cleqf ⊢  ( 𝐴   =  𝐵   ↔  ∀ 𝑥  ( 𝑥   ∈  𝐴   ↔  𝑥   ∈  𝐵  ) )  
						
							7 
								5  6 
							 
							sylibr ⊢  ( 𝜑   →  𝐴   =  𝐵  )