Metamath Proof Explorer


Theorem cleqf

Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqh . (Contributed by NM, 26-May-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 17-Nov-2019) Avoid ax-13 . (Revised by Wolf Lammen, 10-May-2023) Avoid ax-10 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses cleqf.1 𝑥 𝐴
cleqf.2 𝑥 𝐵
Assertion cleqf ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 cleqf.1 𝑥 𝐴
2 cleqf.2 𝑥 𝐵
3 dfcleq ( 𝐴 = 𝐵 ↔ ∀ 𝑦 ( 𝑦𝐴𝑦𝐵 ) )
4 nfv 𝑦 ( 𝑥𝐴𝑥𝐵 )
5 1 nfcri 𝑥 𝑦𝐴
6 2 nfcri 𝑥 𝑦𝐵
7 5 6 nfbi 𝑥 ( 𝑦𝐴𝑦𝐵 )
8 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
9 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐵𝑦𝐵 ) )
10 8 9 bibi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑦𝐴𝑦𝐵 ) ) )
11 4 7 10 cbvalv1 ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ∀ 𝑦 ( 𝑦𝐴𝑦𝐵 ) )
12 3 11 bitr4i ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )