Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqh . (Contributed by NM, 26-May-1993) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 17-Nov-2019) Avoid ax-13 . (Revised by Wolf Lammen, 10-May-2023) Avoid ax-10 . (Revised by Gino Giotto, 20-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cleqf.1 | |- F/_ x A |
|
cleqf.2 | |- F/_ x B |
||
Assertion | cleqf | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleqf.1 | |- F/_ x A |
|
2 | cleqf.2 | |- F/_ x B |
|
3 | dfcleq | |- ( A = B <-> A. y ( y e. A <-> y e. B ) ) |
|
4 | nfv | |- F/ y ( x e. A <-> x e. B ) |
|
5 | 1 | nfcri | |- F/ x y e. A |
6 | 2 | nfcri | |- F/ x y e. B |
7 | 5 6 | nfbi | |- F/ x ( y e. A <-> y e. B ) |
8 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
9 | eleq1w | |- ( x = y -> ( x e. B <-> y e. B ) ) |
|
10 | 8 9 | bibi12d | |- ( x = y -> ( ( x e. A <-> x e. B ) <-> ( y e. A <-> y e. B ) ) ) |
11 | 4 7 10 | cbvalv1 | |- ( A. x ( x e. A <-> x e. B ) <-> A. y ( y e. A <-> y e. B ) ) |
12 | 3 11 | bitr4i | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |