Metamath Proof Explorer


Theorem eqtr4i

Description: An equality transitivity inference. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses eqtr4i.1 A=B
eqtr4i.2 C=B
Assertion eqtr4i A=C

Proof

Step Hyp Ref Expression
1 eqtr4i.1 A=B
2 eqtr4i.2 C=B
3 2 eqcomi B=C
4 1 3 eqtri A=C