Metamath Proof Explorer


Theorem equidq

Description: equid with universal quantifier without using ax-c5 or ax-5 . (Contributed by NM, 13-Jan-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equidq y x = x

Proof

Step Hyp Ref Expression
1 equidqe ¬ y ¬ x = x
2 ax10fromc7 ¬ y x = x y ¬ y x = x
3 hbequid x = x y x = x
4 3 con3i ¬ y x = x ¬ x = x
5 2 4 alrimih ¬ y x = x y ¬ x = x
6 1 5 mt3 y x = x