Metamath Proof Explorer


Theorem equidq

Description: equid with universal quantifier without using ax-c5 or ax-5 . (Contributed by NM, 13-Jan-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equidq yx=x

Proof

Step Hyp Ref Expression
1 equidqe ¬y¬x=x
2 ax10fromc7 ¬yx=xy¬yx=x
3 hbequid x=xyx=x
4 3 con3i ¬yx=x¬x=x
5 2 4 alrimih ¬yx=xy¬x=x
6 1 5 mt3 yx=x