Metamath Proof Explorer


Theorem equidqe

Description: equid with existential quantifier without using ax-c5 or ax-5 . (Contributed by NM, 13-Jan-2011) (Proof shortened by Wolf Lammen, 27-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equidqe ¬y¬x=x

Proof

Step Hyp Ref Expression
1 ax6fromc10 ¬y¬y=x
2 ax7 y=xy=xx=x
3 2 pm2.43i y=xx=x
4 3 con3i ¬x=x¬y=x
5 4 alimi y¬x=xy¬y=x
6 1 5 mto ¬y¬x=x