Metamath Proof Explorer


Theorem equvinva

Description: A modified version of the forward implication of equvinv adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018)

Ref Expression
Assertion equvinva x=yzx=zy=z

Proof

Step Hyp Ref Expression
1 ax6evr zy=z
2 equtr x=yy=zx=z
3 2 ancrd x=yy=zx=zy=z
4 3 eximdv x=yzy=zzx=zy=z
5 1 4 mpi x=yzx=zy=z