Metamath Proof Explorer


Theorem eqvinc

Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Proof shortened by Thierry Arnoux, 23-Jan-2022)

Ref Expression
Hypothesis eqvinc.1 AV
Assertion eqvinc A=Bxx=Ax=B

Proof

Step Hyp Ref Expression
1 eqvinc.1 AV
2 eqvincg AVA=Bxx=Ax=B
3 1 2 ax-mp A=Bxx=Ax=B