Metamath Proof Explorer


Theorem eqvrelim

Description: Equivalence relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion eqvrelim EqvRelRdomR=ranR

Proof

Step Hyp Ref Expression
1 eqvrelsymrel EqvRelRSymRelR
2 symrelim SymRelRdomR=ranR
3 1 2 syl EqvRelRdomR=ranR