Metamath Proof Explorer


Definition df-symrel

Description: Define the symmetric relation predicate. (Read: R is a symmetric relation.) For sets, being an element of the class of symmetric relations ( df-symrels ) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel . Alternate definitions are dfsymrel2 and dfsymrel3 . (Contributed by Peter Mazsa, 16-Jul-2021)

Ref Expression
Assertion df-symrel SymRelRRdomR×ranR-1RdomR×ranRRelR

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 wsymrel wffSymRelR
2 0 cdm classdomR
3 0 crn classranR
4 2 3 cxp classdomR×ranR
5 0 4 cin classRdomR×ranR
6 5 ccnv classRdomR×ranR-1
7 6 5 wss wffRdomR×ranR-1RdomR×ranR
8 0 wrel wffRelR
9 7 8 wa wffRdomR×ranR-1RdomR×ranRRelR
10 1 9 wb wffSymRelRRdomR×ranR-1RdomR×ranRRelR