Metamath Proof Explorer


Theorem dfsymrels2

Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion dfsymrels2 SymRels = r Rels | r -1 r

Proof

Step Hyp Ref Expression
1 df-symrels SymRels = Syms Rels
2 df-syms Syms = r | r dom r × ran r -1 S r dom r × ran r
3 inex1g r V r dom r × ran r V
4 3 elv r dom r × ran r V
5 brssr r dom r × ran r V r dom r × ran r -1 S r dom r × ran r r dom r × ran r -1 r dom r × ran r
6 4 5 ax-mp r dom r × ran r -1 S r dom r × ran r r dom r × ran r -1 r dom r × ran r
7 elrels6 r V r Rels r dom r × ran r = r
8 7 elv r Rels r dom r × ran r = r
9 8 biimpi r Rels r dom r × ran r = r
10 9 cnveqd r Rels r dom r × ran r -1 = r -1
11 10 9 sseq12d r Rels r dom r × ran r -1 r dom r × ran r r -1 r
12 6 11 syl5bb r Rels r dom r × ran r -1 S r dom r × ran r r -1 r
13 1 2 12 abeqinbi SymRels = r Rels | r -1 r