Metamath Proof Explorer


Theorem brssr

Description: The subset relation and subclass relationship ( df-ss ) are the same, that is, ( AS B <-> A C B ) when B is a set. (Contributed by Peter Mazsa, 31-Jul-2019)

Ref Expression
Assertion brssr B V A S B A B

Proof

Step Hyp Ref Expression
1 relssr Rel S
2 1 brrelex1i A S B A V
3 2 adantl B V A S B A V
4 simpl B V A S B B V
5 3 4 jca B V A S B A V B V
6 ssexg A B B V A V
7 simpr A B B V B V
8 6 7 jca A B B V A V B V
9 8 ancoms B V A B A V B V
10 sseq1 x = A x y A y
11 sseq2 y = B A y A B
12 df-ssr S = x y | x y
13 10 11 12 brabg A V B V A S B A B
14 5 9 13 pm5.21nd B V A S B A B