Metamath Proof Explorer


Theorem brssr

Description: The subset relation and subclass relationship ( df-ss ) are the same, that is, ( AS B <-> A C B ) when B is a set. (Contributed by Peter Mazsa, 31-Jul-2019)

Ref Expression
Assertion brssr BVASBAB

Proof

Step Hyp Ref Expression
1 relssr RelS
2 1 brrelex1i ASBAV
3 2 adantl BVASBAV
4 simpl BVASBBV
5 3 4 jca BVASBAVBV
6 ssexg ABBVAV
7 simpr ABBVBV
8 6 7 jca ABBVAVBV
9 8 ancoms BVABAVBV
10 sseq1 x=AxyAy
11 sseq2 y=BAyAB
12 df-ssr S=xy|xy
13 10 11 12 brabg AVBVASBAB
14 5 9 13 pm5.21nd BVASBAB