| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relssr |
|- Rel _S |
| 2 |
1
|
brrelex1i |
|- ( A _S B -> A e. _V ) |
| 3 |
2
|
adantl |
|- ( ( B e. V /\ A _S B ) -> A e. _V ) |
| 4 |
|
simpl |
|- ( ( B e. V /\ A _S B ) -> B e. V ) |
| 5 |
3 4
|
jca |
|- ( ( B e. V /\ A _S B ) -> ( A e. _V /\ B e. V ) ) |
| 6 |
|
ssexg |
|- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
| 7 |
|
simpr |
|- ( ( A C_ B /\ B e. V ) -> B e. V ) |
| 8 |
6 7
|
jca |
|- ( ( A C_ B /\ B e. V ) -> ( A e. _V /\ B e. V ) ) |
| 9 |
8
|
ancoms |
|- ( ( B e. V /\ A C_ B ) -> ( A e. _V /\ B e. V ) ) |
| 10 |
|
sseq1 |
|- ( x = A -> ( x C_ y <-> A C_ y ) ) |
| 11 |
|
sseq2 |
|- ( y = B -> ( A C_ y <-> A C_ B ) ) |
| 12 |
|
df-ssr |
|- _S = { <. x , y >. | x C_ y } |
| 13 |
10 11 12
|
brabg |
|- ( ( A e. _V /\ B e. V ) -> ( A _S B <-> A C_ B ) ) |
| 14 |
5 9 13
|
pm5.21nd |
|- ( B e. V -> ( A _S B <-> A C_ B ) ) |